Lesson Plan

Name	:	Sonia
Discipline	:	Common for all branches
Year	:	1 st
Subject	:	Applied Chemistry
Code	:	180014
Duration	:	16 weeks (09/01/2020 to 30/04/2020)
Work Load	:	2 Lectures and 1 Practical per week

Week	Theory		Practical		
	Lecture	Торіс	Practical	Торіс	
	Day	(including assignment/ test)	Day		
1st	1st	General Steps of metallurgy a) Crushing b) Pulverization of ore c) Concentration or purification of ore: (i) Gravity separation method (ii) froth flotation method d) Oxidation of ore: i) Roasting. ii) Calcination	1st	To determine the percentage of ash in given sample of coal.	
	2 nd	Definition of metallurgy, types of metallurgy General Steps of metallurgy e) Crushing f) Pulverization of ore g) Concentration or purification of ore: (j) Gravity separation method (ii) froth flotation method h) Oxidation of ore: i) Roasting. ii) Calcination	2 nd	To determine the percentage of ash in given sample of coal.	
2 nd	1 st	Reduction: i) Smelting (Pyrometallurgy) ii) Electrolytic reduction	1 st	To determine the percentage of ash in given sample of coal.	
	2 nd	Refining of Metal: Electrolytic refining	2 nd	To determine the percentage of ash in given sample of coal	

3 rd	1 st	Definition of alloy, types of alloys and	1 st	Practical Practice
	Ind	Definition of fuel classification of fuel a) on	7 nd	Practical Practica
	4	the basis of physical state b) on the basis		I factical I factice
		of source.		
4 th	1 st	Test	1 st	To determine the
	2 nd	Characteristics of good fuel, advantages of		percentage of volatile
		gaseous fuel over solid fuels. Definition of		and non volatile
		calorific value, HCV and LCV.		substance in given
				mixture.
			2^{nd}	To determine the
				percentage of volatile
				and non volatile
				substance in given
5th	1 st	Cool Provimate analysis of cool and its	1 st	To determine the
5-	1	importance	1	nercentage of volatile
	7nd	Fuel quality rating, octane number and		and non volatile
	-	cetane number (definition only)		substance in given
				mixture.
			2 nd	To determine the
				percentage of volatile
				and non volatile
				substance in given
-0				mixture.
6 th	1 st	Gaseous fuel: Composition, calorific value	1 st	Practical Practice
		and application of CNG, LPG and biogas.		
	2 nd	Gaseous fuel: Composition, calorific value	2 nd	Practical Practice
		and application of CNG, LPG and biogas.		
7 th	1 st	Type of water: Soft and hard water.	1 st	To determine the
	2 nd	Types of hardness of water . Units of		viscosity of lubricant
		hardness of water: ppm, mg/L (with simple		by using Redwood
		numericals).		viscometer.
			2^{nd}	To determine the
				viscosity of lubricant
				by using Redwood
Oth	1 st		1 st	viscometer.
8.11	1*	lest	La	10 determine the
		Disadvantages of using hard water in boiler		by using Redwood
		a) Scale and sludge formation		viscometer
	2 nd	b) Boiler Corrosion		viscometer.
	-	c) Caustic embrittlement	2 nd	To determine the
		,		viscosity of lubricant
				by using Redwood
				viscometer.

9 th	1 st	 Disadvantages of using hard water in boiler. a) Scale and sludge formation b) Boiler Corrosion c) Caustic embrittlement 	1 st	Practical Practice
	2 nd	Qualities of drinking (potable) water	2 nd	Practical Practice
10 th	1 st 2 nd	Lubricant and lubrication. Functions of lubricants	1 st	To determine total acid number (TAN) or Total acid value of given lubricant (liquid).
			2 nd	To determine total acid number (TAN) or Total acid value of given lubricant (liquid
11 th	1 st 2 nd	Classification of lubricants: solid, semisolid and liquid lubricants with examples. Type of lubrications – hydrodynamic and boundary lubrication with illustrative diagrams Properties of lubricants:	1 st	To determine total acid number (TAN) or Total acid value of given lubricant (liquid)
		Physical properties - viscosity	2 nd	To determine total acid number (TAN) or Total acid value of given lubricant (liquid).
12 th	1 st	Test	1 st	Practical Practice
	2 nd	Properties of lubricants:- Chemical properties- TAN or TAV (Total acid number), emulsification, aniline point and iodine value. viscosity index, cloud point, pour point, flash point, fire point, oiliness	2 nd	Practical Practice
13 th	1 st	Definition of polymer, Monomer, Degree of Polymerization	1 st	To determine total acid number (TAN) or Total acid value of given lubricant (liquid).
	2 nd	Monomer and uses of PE, PVC, PS, Teflon, Nylon-66, Bakelite	2 nd	To determine total acid number (TAN) or Total acid value of given lubricant (liquid).

14 th	1 st	Brief introduction to addition and condensation polymers with suitable examples (PE, PVC, PS, Teflon, Nylon-66, Bakelite).	1 st	Detection of iron metal in the given solution of rust.
	2 nd	Brief introduction to addition and condensation polymers with suitable examples (PE, PVC, PS, Teflon, Nylon-66, Bakelite).	2 nd	Detection of iron metal in the given solution of rust.
15 th	1 st	Assignment Work on Organic Chemistry	1 st	Practical Practice
	2 nd	Definition of plastics, thermoplastic and thermosetting polymer with example, difference between thermoplastic and thermosetting polymers.	2 nd	Practical Practice
16 th	1 st	Definition of plastics, thermoplastic and thermosetting polymer with example, difference between thermoplastic and thermosetting polymers.	1 st	Detection of iron metal in the given solution of rust.
	2 nd	Uses of polymer and plastic in daily life and in industries. And Test	2 nd	Detection of iron metal in the given solution of rust.